palindrome substring partition
Had an interview with the team that works on opeartor fustion.
Failed this first round interview.
I only gave very naive solution. Not really sad.
I am well prepared for kinds of outcomes.
Problem:
given two strings a and b with same length n, you can partition two strings at the same place for two strings into a1, a2 and b1 b2, ie. length of a1 is equal to length of b1 and length of a2 is equal to the length of b2. please give a algorithm to test if there is a partition that can form a concat string such at a1 + b2 or b1 + a2 is palindrome string
corresponding leetcode problem:
https://leetcode.com/problems/split-two-strings-to-make-palindrome/solutions/888885/c-java-greedy-o-n-o-1/
Certainly! Here’s a step-by-step algorithm to test if there is a partition that can form a palindrome by concatenating ( a1 + b2 ) or ( b1 + a2 ):
Algorithm
- Input: Two strings
a
andb
of lengthn
. - Output: A boolean value indicating if there exists a partition point where ( a1 + b2 ) or ( b1 + a2 ) is a palindrome.
Steps:
- Initialization:
- Loop through each possible partition point
i
from0
ton
.
- Loop through each possible partition point
- Check Partitions:
- For each partition point
i
, split the strings intoa1
,a2
,b1
, andb2
.- ( a1 = a[0:i] )
- ( a2 = a[i:n] )
- ( b1 = b[0:i] )
- ( b2 = b[i:n] )
- For each partition point
- Check Palindromes:
- Concatenate
a1 + b2
and check if it’s a palindrome. - Concatenate
b1 + a2
and check if it’s a palindrome. - If either concatenation is a palindrome, return
True
.
- Concatenate
- Return False:
- If no valid palindrome is found after all partitions, return
False
.
- If no valid palindrome is found after all partitions, return
Pseudocode
def is_palindrome(s):
return s == s[::-1]
def can_form_palindrome(a, b):
n = len(a)
for i in range(n + 1):
a1, a2 = a[:i], a[i:]
b1, b2 = b[:i], b[i:]
if is_palindrome(a1 + b2) or is_palindrome(b1 + a2):
return True
return False
# Example usage:
a = "yourstringa"
b = "yourstringb"
print(can_form_palindrome(a, b))
Explanation
-
is_palindrome(s)
: This function checks if a given strings
is a palindrome. -
can_form_palindrome(a, b)
: This function iterates through each possible partition point, creates the substringsa1
,a2
,b1
,b2
, and checks if eithera1 + b2
orb1 + a2
forms a palindrome.
This algorithm runs in ( O(n^2) ) time complexity because it performs a linear check for palindromes for each of the ( n + 1 ) partition points.
Feel free to test this with your specific strings! If you need further refinements or have more questions, I’m here to help! 😊
Understood! We can develop a more efficient algorithm to check for a palindrome partition by leveraging additional data structures and dynamic programming principles. Here’s a refined and more efficient approach:
Efficient Algorithm
- Input: Two strings
a
andb
of lengthn
. - Output: A boolean value indicating if there exists a partition point where ( a1 + b2 ) or ( b1 + a2 ) is a palindrome.
Steps:
- Initialization:
- Precompute palindromic substrings for both
a
andb
using a 2D boolean arrayP[i][j]
which indicates if the substring from indexi
toj
is a palindrome.
- Precompute palindromic substrings for both
- Precompute Palindromic Substrings:
- Use dynamic programming to fill in the 2D boolean arrays
Pa
andPb
for stringsa
andb
, respectively.
- Use dynamic programming to fill in the 2D boolean arrays
- Check Possible Partitions:
- For each partition point
i
from0
ton
:- Check if
a[:i] + b[i:]
forms a palindrome by ensuring both substrings are palindromes. - Check if
b[:i] + a[i:]
forms a palindrome by ensuring both substrings are palindromes.
- Check if
- For each partition point
- Return Result:
- If a valid palindrome partition is found, return
True
. - If no valid palindrome partition is found after all partitions, return
False
.
- If a valid palindrome partition is found, return
Pseudocode
def is_palindrome(s, start, end):
while start < end:
if s[start] != s[end]:
return False
start += 1
end -= 1
return True
def can_form_palindrome(a, b):
n = len(a)
# Precompute palindromes for string a
Pa = [[False] * n for _ in range(n)]
for i in range(n):
Pa[i][i] = True
for length in range(2, n + 1):
for i in range(n - length + 1):
j = i + length - 1
if a[i] == a[j] and (length == 2 or Pa[i + 1][j - 1]):
Pa[i][j] = True
# Precompute palindromes for string b
Pb = [[False] * n for _ in range(n)]
for i in range(n):
Pb[i][i] = True
for length in range(2, n + 1):
for i in range(n - length + 1):
j = i + length - 1
if b[i] == b[j] and (length == 2 or Pb[i + 1][j - 1]):
Pb[i][j] = True
# Check for possible partitions
for i in range(n + 1):
if (i == 0 or Pa[0][i - 1]) and (i == n or Pb[i][n - 1]):
return True
if (i == 0 or Pb[0][i - 1]) and (i == n or Pa[i][n - 1]):
return True
return False
# Example usage:
a = "yourstringa"
b = "yourstringb"
print(can_form_palindrome(a, b))
Explanation
-
is_palindrome(s, start, end)
: Helper function to check if the substrings[start:end]
is a palindrome. -
can_form_palindrome(a, b)
: Main function to precompute palindromic substrings and check for valid partitions.- Precomputation: Use dynamic programming to fill in the 2D boolean arrays
Pa
andPb
indicating palindromic substrings fora
andb
. - Partition Check: For each partition point
i
, check ifa[:i] + b[i:]
orb[:i] + a[i:]
forms a palindrome by ensuring both substrings are palindromic.
- Precomputation: Use dynamic programming to fill in the 2D boolean arrays
This approach reduces the time complexity by precomputing the palindromic substrings and performing efficient checks during partitioning.
Feel free to test this refined algorithm and let me know if you need further assistance or refinements! 😊
Simple greedy solution
class Solution {
public:
bool checkPalindromeFormation(string a, string b) {
return validate(a, b) || validate(b, a);
}
bool validate(string &a, string& b) {
int l=0;
int r = a.size() -1;
while(l < r) {
if(a[l] != b[r]) {
return checkpalindrome(a, l, r) || checkpalindrome(b, l, r);
}
l++;
r--;
}
return true;
}
bool checkpalindrome(string&s, int l, int r) {
while(l < r) {
if(s[l] != s[r]) return false;
l++;
r--;
}
return true;
}
};
Enjoy Reading This Article?
Here are some more articles you might like to read next: